首页出版物导航 用户协会 博客
 精确匹配 高级检索 检索历史
河北工业大学
详细信息

Artificial grammar learning in vascular and progressive non-fluent aphasias.

Title: Artificial grammar learning in vascular and progressive non-fluent aphasias.
Authors: Cope TE; Department of Clinical Neurosciences, University of Cambridge, UK; Institute of Neuroscience, Newcastle University, UK. Electronic address: thomascope@gmail.com.
Wilson B; Institute of Neuroscience, Newcastle University, UK.
Robson H; School of Psychology and Clinical Language Sciences, University of Reading, UK.
Drinkall R; School of Psychology and Clinical Language Sciences, University of Reading, UK.
Dean L; Institute of Neuroscience, Newcastle University, UK.
Grube M; Institute of Neuroscience, Newcastle University, UK.
Jones PS; Department of Clinical Neurosciences, University of Cambridge, UK.
Patterson K; Department of Clinical Neurosciences, University of Cambridge, UK; Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK.
Griffiths TD; Institute of Neuroscience, Newcastle University, UK.
Rowe JB; Department of Clinical Neurosciences, University of Cambridge, UK; Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK.
Petkov CI; Institute of Neuroscience, Newcastle University, UK.
Source: Neuropsychologia [Neuropsychologia] 2017 Sep; Vol. 104, pp. 201-213. Date of Electronic Publication: 2017 Aug 24.
Publication Type: Journal Article
Language: English
Journal Info: In Process
Imprint Name(s): : Oxford.
Abstract: Patients with non-fluent aphasias display impairments of expressive and receptive grammar. This has been attributed to deficits in processing configurational and hierarchical sequencing relationships. This hypothesis had not been formally tested. It was also controversial whether impairments are specific to language, or reflect domain general deficits in processing structured auditory sequences. Here we used an artificial grammar learning paradigm to compare the abilities of controls to participants with agrammatic aphasia of two different aetiologies: stroke and frontotemporal dementia. Ten patients with non-fluent variant primary progressive aphasia (nfvPPA), 12 with non-fluent aphasia due to stroke, and 11 controls implicitly learned a novel mixed-complexity artificial grammar designed to assess processing of increasingly complex sequencing relationships. We compared response profiles for otherwise identical sequences of speech tokens (nonsense words) and tone sweeps. In all three groups the ability to detect grammatical violations varied with sequence complexity, with performance improving over time and being better for adjacent than non-adjacent relationships. Patients performed less well than controls overall, and this was related more strongly to aphasia severity than to aetiology. All groups improved with practice and performed well at a control task of detecting oddball nonwords. Crucially, group differences did not interact with sequence complexity, demonstrating that aphasic patients were not disproportionately impaired on complex structures. Hierarchical cluster analysis revealed that response patterns were very similar across all three groups, but very different between the nonsense word and tone tasks, despite identical artificial grammar structures. Overall, we demonstrate that agrammatic aphasics of two different aetiologies are not disproportionately impaired on complex sequencing relationships, and that the learning of phonological and non-linguistic sequences occurs independently. The similarity of profiles of discriminatory abilities and rule learning across groups suggests that insights from previous studies of implicit sequence learning in vascular aphasia are likely to prove applicable in nfvPPA. ; (Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.)
Comments: Cites: J Neurosci. 2011 Mar 2;31(9):3344-50. (PMID: 21368046) ; Cites: J Neurolinguistics. 2008 Jan;21(1):35-65. (PMID: 18438453) ; Cites: J Neurosci. 2012 Mar 21;32(12):4260-70. (PMID: 22442088) ; Cites: Neuropsychologia. 2014 Jan;53:25-38. (PMID: 24184437) ; Cites: Ann Neurol. 2006 Jan;59(1):156-65. (PMID: 16374817) ; Cites: Cogn Sci. 2013 Sep-Oct;37(7):1290-320. (PMID: 23772795) ; Cites: Brain. 1977 Mar;100 Pt 1:1-18. (PMID: 861709) ; Cites: Neuropsychologia. 2010 Sep;48(11):3211-27. (PMID: 20603138) ; Cites: Cognition. 1985 Nov;21(2):117-75. (PMID: 2419022) ; Cites: J Cogn Neurosci. 1995 Fall;7(4):497-510. (PMID: 23961907) ; Cites: Behav Neurol. 2013;26(1-2):35-54. (PMID: 22713394) ; Cites: Brain. 2014 Oct;137(Pt 10):2632-48. (PMID: 24974382) ; Cites: J Speech Lang Hear Res. 2009 Apr;52(2):321-35. (PMID: 19339700) ; Cites: Cognition. 2010 Sep;116(3):382-93. (PMID: 20605017) ; Cites: Trends Cogn Sci. 2000 May;4(5):178-186. (PMID: 10782103) ; Cites: J Neurosci. 2010 Dec 15;30(50):16845-54. (PMID: 21159955) ; Cites: Ann Neurol. 2004 Mar;55(3):335-46. (PMID: 14991811) ; Cites: Neuroimage. 2003 Nov;20 Suppl 1:S8-17. (PMID: 14597292) ; Cites: Brain. 2014 Jan;137(Pt 1):242-54. (PMID: 24163248) ; Cites: Neurology. 2011 Mar 15;76(11):1006-14. (PMID: 21325651) ; Cites: Brain Lang. 1996 Jan;52(1):276-302. (PMID: 8741983) ; Cites: Brain. 2006 Jun;129(Pt 6):1385-98. (PMID: 16613895) ; Cites: Ann N Y Acad Sci. 2008 Dec;1145:113-31. (PMID: 19076393) ; Cites: Proc Natl Acad Sci U S A. 2009 May 19;106(20):8362-7. (PMID: 19416819) ; Cites: Cortex. 2014 Jan;50:7-18. (PMID: 24209737) ; Cites: Brain Lang. 2003 Aug;86(2):207-25. (PMID: 12921765) ; Cites: Cereb Cortex. 2000 Jul;10(7):698-705. (PMID: 10906316) ; Cites: Brain. 2005 Sep;128(Pt 9):1996-2005. (PMID: 16033782) ; Cites: Neurology. 2014 Apr 1;82(13):1127-31. (PMID: 24574548) ; Cites: Med Image Anal. 2001 Jun;5(2):143-56. (PMID: 11516708) ; Cites: Brain Lang. 2012 Feb;120(2):83-95. (PMID: 20943261) ; Cites: Cognition. 1996 Mar;58(3):289-308. (PMID: 8871341) ; Cites: Hum Brain Mapp. 1997;5(2):124-32. (PMID: 10096417) ; Cites: Brain. 2014 Apr;137(Pt 4):1176-92. (PMID: 24574501) ; Cites: J Speech Hear Res. 1970 Sep;13(3):607-23. (PMID: 5507117) ; Cites: Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2458-63. (PMID: 16461904) ; Cites: Cortex. 2015 Aug;69:212-9. (PMID: 26103599) ; Cites: Okla Nurse. 1988 Mar;33(1):8. (PMID: 3368206) ; Cites: Brain. 2016 Jun;139(Pt 6):1817-29. (PMID: 27060523) ; Cites: Nat Rev Neurosci. 2007 May;8(5):393-402. (PMID: 17431404) ; Cites: Nat Rev Neurol. 2010 Apr;6(4):202-10. (PMID: 20212513) ; Cites: Alzheimers Dement (N Y). 2016 Nov;2(4):213-221. (PMID: 28503656) ; Cites: Stroke. 2016 Mar;47(3):822-8. (PMID: 26797664) ; Cites: Lancet. 2017 Apr 15;389(10078):1528-1538. (PMID: 28256356) ; Cites: Eur J Neurosci. 2015 Mar;41(5):568-78. (PMID: 25728176) ; Cites: Behav Res Methods Instrum Comput. 1999 Feb;31(1):137-49. (PMID: 10495845) ; Cites: Physiol Rev. 2011 Oct;91(4):1357-92. (PMID: 22013214) ; Cites: J Cogn Psychol (Hove). 2017;29(5):521-534. (PMID: 28690782) ; Cites: Cochrane Database Syst Rev. 2016 Jun 01;(6):CD000425. (PMID: 27245310) ; Cites: Neuroimage. 2008 Aug 15;42(2):525-34. (PMID: 18554927) ; Cites: Trends Cogn Sci. 2015 Mar;19(3):117-25. (PMID: 25631249) ; Cites: Neuroimage. 2016 Feb 15;127:307-323. (PMID: 26666896) ; Cites: Neurology. 2012 May 22;78(21):1670-7. (PMID: 22573633) ; Cites: Brain Lang. 1976 Oct;3(4):572-82. (PMID: 974731) ; Cites: Behav Brain Sci. 2000 Feb;23(1):1-21; discussion 21-71. (PMID: 11303337) ; Cites: Brain. 2016 Oct;139(Pt 10):2778-2791. (PMID: 27497488) ; Cites: Lancet. 1984 Jun 2;1(8388):1197-200. (PMID: 6202993) ; Cites: Front Syst Neurosci. 2013 Dec 24;7:116. (PMID: 24399939) ; Cites: Brain. 2010 Jan;133(Pt 1):272-85. (PMID: 19797352) ; Cites: Brain. 2016 Jun;139(Pt 6):1800-16. (PMID: 27190021) ; Cites: J Neurosci. 2009 Jun 10;29(23):7540-8. (PMID: 19515922) ; Cites: Psychol Bull. 1985 Jul;98(1):185-99. (PMID: 4034817) ; Cites: Cognition. 2010 Mar;114(3):356-71. (PMID: 19922909) ; Cites: Curr Opin Neurol. 2006 Dec;19(6):565-71. (PMID: 17102695) ; Cites: Neuroimage. 2016 Jan 1;124(Pt B):1208-12. (PMID: 25882753) ; Cites: Neurobiol Aging. 2012 Apr;33(4):744-52. (PMID: 20580129) ; Cites: Neuron. 2011 Oct 20;72(2):397-403. (PMID: 22017996) ; Cites: J Neurol Neurosurg Psychiatry. 2005 May;76(5):644-9. (PMID: 15834020) ; Cites: Proc Biol Sci. 2012 Nov 7;279(1746):4496-504. (PMID: 22951739) ; Cites: Top Stroke Rehabil. 2003 Summer;10 (2):66-76. (PMID: 13680518) ; Cites: Neuroimage. 2006 Aug 15;32(2):956-67. (PMID: 16757182) ; Cites: Brain. 2005 Dec;128(Pt 12):2858-71. (PMID: 16234297) ; Cites: Aphasiology. 2017;31(1):25-48. (PMID: 28603329) ; Cites: J Cogn Neurosci. 2000 Jan;12(1):120-33. (PMID: 10769310) ; Cites: Brain. 2016 Aug 23;:. (PMID: 27554388) ; Cites: J Neurosci. 2014 Jun 25;34(26):8728-40. (PMID: 24966373) ; Cites: Curr Biol. 2012 Nov 6;22(21):2059-62. (PMID: 23063434) ; Cites: Cortex. 2012 Jun;48(6):664-73. (PMID: 21420079)
Grant Information: United Kingdom Wellcome Trust
Contributed Indexing: Aphasia; Frontotemporal dementia; Grammar; Implicit learning; Stroke
Entry Date(s): 20171021
Update Code: 20171021
PMID: 28843341
PageCount: 201-201
volume: 104
issn: 1873-3514
pubdate: 2017
DOI: https://doi.org/10.1016/j.neuropsychologia.2017.08.022
Custom Links: Full Text Finder